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Abstract. In this paper we give an analytical equivalent for the inclusion of a set to the Lebesque
set of a convex function. Using this results, we obtain global optimality conditions (GOC) related
to classical optimization theory for convex maximization and reverse-convex optimization. Several
examples illustrate the effectiveness of these optimality conditions allowing to escape from stationary
points and local extremums.
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1. Introduction

Nowadays there is a renewal of interest and a revival of activity in global opti-
mization (GO) [2–16] due to two kinds of incentives: more precise demands from
the world of applications, and more pertinent theoretical contributions from mathe-
maticians. However, in contrast to the fact, that at present there is a huge number of
papers devoted to GO (see, for example, the references in [8]), there does not exist
a generally accepted GO conditions theory allowing to construct GO algorithms
capable of solving large dimensional GO problems, although a hope to do it is
glimmering yet. Taking into account the situation in global optimization we decid-
ed to inform the Western ‘GO society’ on the approach proposed in [11–16], since
the papers [12–14] (in Russian) are not fully available to Western mathematicians.
Surprisingly enough the simple notion of convexity plays a crucial role in the devel-
opment of the theory and the practice of optimization during the second part of the
20th century. As it is well-known the Fermat and Lagrange principles remain basic
for solution methods in mathematical programming, mainly for convex problems,
where every local solution turns out to be global one. Nevertheless, this classical
apparatus turns out to be inoperative for nonconvex problems where there may be
‘many’ local extremums which differ from global ones as it is in ‘reverse convex’
optimization, where convexity is present, but in a reverse sense (concave mini-
mization or convex maximization, reverse convex problems and d.c. programming
problems). Regardless of the importance of classical theory, the development of
‘reverse convex optimization’ took the way of branch and bounds, bisection’s and
cut’s ideas etc., which stand further from the Classical Principles of Extremum
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Theory. However, there may exist a way for GO keeping on the classical road. In
order to analyze the situation it would be pertinant to recall a few basic features of
Classical Optimality Conditions (GOC).

To begin with, consider the characterization of a global solution z 2 D to a
convex problem

f(x) # min; x 2 D; (1)

(f(�) and D are convex) given by the condition

< rf(z); x� z >> 0 8x 2 D: (2)

This means that in order to verify whether a point z is a global solution to (1), we
have to solve the linearized problem

< rf(z); x ># min; x 2 D; (3)

and after this, we have to verify the inequality

< rf(z); x(z)� z >> 0; (4)

where x(z) is a solution of (3).
Hence, the meaning of optimality condition (OC) (2) in particular consists in

reducing the original problem (1) to a simplier one (3) (with a linear objective
function).

Secondly, it is well-known that if Inequality (4) is violated, that is,

< rf(z); x(z)� z >< 0;

then one can form a feasible point x(�) = �x(z) + (1 � �)z; � 2]0; 1[, which
is better than z : f(x(�)) < f(z). In other words, OC (2) allows us to decide
whether a feasible point z is a global solution to (1) or not, and if not, (2) enables
us to construct a better feasible point. In the sequel, this property of the OC will be
called the Algorithmic Property.

It can be readily seen that the classical local OC:

< rf(z); x� z >6 0 8x 2 D; (5)

for a convex maximization problem

f(x) " max; x 2 D; (6)

(where f and D are convex) concerves the Algorithmic Property of OC (2). The
same can be said about Rockafeller’s OC (1970 [2])

@f(z) � N(z=D); (7)

since (7) can be expressed as

8z� 2 @f(z) :< z�; x� z >6 0 8x 2 D: (70)
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GLOBAL OPTIMALITY CONDITIONS FOR NONCONVEX OPTIMIZATION 417

As far as we know, (7) was the first OC which distinguishes itself from classical
OC that have the character of nonempty intersections (or of existence)

@f(z) \N(z=D) 6= ;: (8)

The latter condition is generated by the geometry of intersections

D0 \D = ;; (9)

where D0 = fx 2 Rn=f(x) > f(z)g for (6).
It is clear that if z is a global solution of (6), then (9) holds. But for arbitrary sets

D0 and D we are not able to give any analytical equivalent to (9) which can lead
us to OC with the Algorithmic Property. By replacing D0 and D by corresponding
convex conic approximations K0 and K1 [2–6] we derive from (9)

K0 \K1 = ;: (10)

When we apply an appropriated separation theorem at this point we get (8). Hence,
one can say that the classical OC theory is based on Separation Theorems [2–7].
However, note that Rockafeller’s OC (7) cannot be obtained in this way and we
must be very careful to interpret (7) as a classical OC. On the other hand, as it
was noted long ago (see the references in [5–11]) for the reverse convex problems
(as in (6)) the geometry of intersections ((9) and (10)) can not aid in an analytical
characterization of a global solution. Thus, it would be resonable to abandon the
geometry of intersections and to pass to more suitable in the case geometry of
inclusions. For instance, for (6) we have

D � C; (11)

where C is the complement of D0:

C = fx 2 Rn=f(x) 6 f(z)g:

However, when changing the geometry, we need another analytical apparatus,
different from the separation idea and appropriated to the inclusion geometry.
Recall several results from Convex Analysis that give various analytical criterions
of inclusion to a closed convex set.

Let 
0 be the polar to a set 
 � Rn, 0 2 



0 = fx� 2 Rn :< x�; x >6 1 8x 2 
g;

and �(x�=S) be the support function to S � Rn:

�(x�=S) = sup
x

f< x�; x > =x 2 Sg:

It is well-known [2, 5] that if C is a closed convex set and D is an arbitrary set
in Rn, z 2 C \ D, then the inclusion D � C is equivalent to each of the dual
conditions

(C � z)0 � (D � z)0; (12)
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�(x�=D) 6 �(X�=C) 8x� 2 Rn : jjx�jj = 1: (13)

Further, using the useful apparatus of supporting hyperplanes one obtains that
any closed convex setC inRn is the intersection of all closed halfspaces generated
by the supporting hyperplanes to the setC and containing this set. As a consequence,
an arbitrary set D � Rn is contained in a closed convex set C iff D belongs to
every supporting halfspace to the set C . We prefer to express this under the form
[11–16] more appropriated to the theory of OC. Given two nonempty setsD andC
in Rn, one of which (assume C) is closed and convex. Then the inclusion D � C

holds iff the dual inclusion

N(y=C) � N(y=D) 8y 2 bdC (14)

takes place. Here bdC is the boundary of C .
It can be readily seen that the dual inclusions (12)–(14) are related to each other

and that they are almost obviously equivalent. Nevertheless, (14) works only with
boundary points of C ((14) stresses this fact) and not with the global information
about C and D given by (12) and (13). On the other hand, we would not consider
(12)–(14) and, moreover, the inclusion D � C as some OC, because these results
exist independently of any extremum problem and have their own value in Convex
Analysis [1–10]. Besides, the dual inclusions (12)–(14) play the same role for non-
convex problems as do Separation Theorems and the Minkowski-Farkash Theorem
in the Classical Extremum Theory. That is, they provide the analytical apparatus
characterizing the geometrical fact (10). However, nobody estimates Separation
Theorems as OC. Then the following question is natural. What can be called an
OC for a problem of interest? To our opinion, it should be an analytical expression
satisfying the following requirements:

a) This must be an analytical condition involving only the data of the problem
under investigation.

b) It must have a relation with Classical Extremum Theory.
c) This condition must reduce the original problem to a problem or a family of

problems, which are, in a sense, simpler to solve than the original problem.
d) This condition must possess the Algorithmic Property, that is, in the case when

the condition is violated, there is a rule allowing to construct a feasible point
which is better than the point where the condition does not hold.

For instance, it is easy to see that OC (2) satisfies all four properties (a)-(d) for
Problem (1). Similarly, the KKT-OC

rf(z) +
P

m

1 �irgi(z) = 0;

�igi(z) = 0; �i > 0;

9=
; (15)

for the mathematical programming problem

f(x) # min; gi(x) 6 0; i = 1; . . . ;m; (16)
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satisfies the requirements (a)-(d).
Actually, one may say that Problem (16) is reduced (by means of (15)) to solving

the linearized problem

< rf(z); x # min;

< rgi(x); x >6 0; i 2 I;

9=
;

I = fi 2 f1; . . . ;mg=gi(z) = 0g

which is obviously simpler than the original Problem (16), and so on.
Similarly, the GOC of Hiriart-Urruty for Problem (6) using the �-subdifferential

and the �-normal cone [5–7]

@�f(z) � N�(zjD); 8� > 0; (17)

possesses all the features (a)-(d). Clearly, when � = 0, we readily obtain (7).
In [11–16] another approach was proposed for constructing GOC. For instance,

if z is a global solution to Problem (6), then

8y : f(y) = f(z); 8y� 2 @f(y)

hy�; x� yi 6 0; 8x 2 D

9=
; (18)

or (which is equivalent)

@f(y) 2 N(yjD); 8y : f(y) = f(z): (180)

By setting y = z we again obtain Rockafellar’s Condition (7) which characterizes
only local maxima in (6). However, under the assumption

9v 2 Rn : �1 < f(v) < f(v) < +1

OC (18) turns out to be sufficient for z to be global maximizer to (6). It can be
readily seen that a difficulty of using Condition (18) consists in the choice of a point
y or several points yi, i = 1 . . . r, on the level surfaceU = fy 2 Rnjf(y) = f(z)g.
By analyzing GOC (18) it is easy to note that in order to escape from a stationary
point z, we have to solve the linearized problems (in the smooth case)

hf 0(yi); xi ! max; x 2 D;

and subsequently we have to verify the inequalities

hf 0(yi); �xi � yii 6 0;

where �xi 2 D is a solution to corresponding linearized problem.
In order to facilitate the choice of these points yi for the case of the functions

f(�) with the compact Lebesque set S(f; z) we here propose to use only extreme
points of S(f; z). Hence, this paper aims at several objectives. The first is to give
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an introduction to the results from [11–16] and to future papers that we intend to
publish. On the other hand, we display a ‘geometrical’ proof of the GO theory
constructed in [11–16]. This proof is completely different from those presented in
[15] and [16] and supplies convex analysis tools concerning the inclusions into a
convex set.

In addition, Proposition 1 (see below) describes the elements from the polar
(S � z)0 of the Lebesque set S = S(f; z) of a convex function f : X ! R [
f+1g. Using this result, Proposition 2 gives the analytical characterization of the
geometrical fact of inclusion of a set into the Lebesque set S(f; z). This makes
it possible to characterize a global solution for convex maximization problems
(Section 2) and the reverse-convex optimization (Section 3) which is shown by the
examples (Sections 2 and 3).

2. Polars and sets inclusions

Let X and X� be a pair of dual locally convex linear topological spaces (see [1]).
Define the polars A� and B� of sets A � X and B � X� respectively, as

A� = fx� 2 X�jhx�; xi 6 1 8x 2 Ag;

B� = fx 2 Xjhx�; xi 6 1 8x� 2 Bg;

and the bipolars by the equalities A�� = (A�)�; B�� = (B�)�.
It is well-known [2] that the polar is always the convex and closed set containing

0. Therefore, if 0 2 A and A is convex and closed then A�� = A. In the general
case (see [2–5]) one can write A� = D�, where

D = cl[co(A [ f0g)];

and since D�� = D, we have

A�� = cl[co(A [ f0g)]:

Further, it is clear that if A,C � X , C 6= ; andA � C thenC� � A�. The inverse
is not trivial.

LEMMA 1 [2]. Suppose sets A, C � X , A 6= ;, C is convex and closed and
z 2 C . Then the following two inclusions are equivalent:

a) A � C;

b) (C � z)� � (A� z)�:
E

Denote by N(yjA) the set

fx� 2 X�jhx�; x� yi 6 0 8x 2 Ag
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GLOBAL OPTIMALITY CONDITIONS FOR NONCONVEX OPTIMIZATION 421

(even if y does not belong to A) and

M(zjA) = fx� 2 (A� z)�j 9u 2 A : hx�; u� zi > 0g:

Then, one has

(A� z)� = N(zjA) [M(zjA) (19)

and the assertion of below turns out to be almost obvious.

LEMMA 2. Let the conditions of Lemma 1 hold. Then A � C iff

i) N(zjC) � N(zjA);

ii) M(zjC) � (A� z)�:

)
(20)

E

Further, consider a proper convex function f : X ! R [ f+1g (see [2–5]) s.t.

�1 6 inf(f;X) < f(z) < +1: (21)

Assume, that its Lebesque set

S(f; z) , fx 2 Xjf(x) 6 f(z)g � intdomf (22)

is compact. Note that closed, compact, etc., are understood in the weak topology
�(X;X�) [1].

PROPOSITION 1. Let y� 2 X� and suppose there exists u 2 S , S(f; z) s.t.

hy�; u� zi > 0:

Then the inclusion y� 2 (S � z)� holds iff there exists an extreme point y 6= z of
S and a number � > 0 s.t.

f(y) = f(z); �y� 2 @f(y);

0 < hy�; y � zi = maxxfhy�; x� zijx 2 Sg 6 1:

)
(23)

Proof. a) If y� satisfies (23), then

0 > f(x)� f(y) > h�y�; x� yi 8x 2 S:

Since � > 0, we have

hy�; yi > hy�; xi 8x 2 S:

Therefore, due to the inequalities in (23) we obtain

1 > hy�; y � zi > hy�; x� zi 8x 2 S:

Thus, y� 2 (S � z)�.
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b) Necessity. 1) Let y� 2 (S � z)� and 9u 2 S : hy�; u � zi > 0. Since S is
compact, there exists y 2 S:

hy�; yi = max
x
fhy�; xijx 2 Sg: (24)

Hence,

0 < hy�; u� zi 6 max
x
fhy�; x� zijx 2 Sg = hy�; y � zi 6 1:

2) It is well-known (see [8]) that the maximum of a convex function over
convex sets is attained at an extreme point. Therefore, y is an extreme point of S
and f(y) = f(z).

3) Introduce two sets

A = f(x; �) 2 X �Rjf(x)� f(z) 6 �g;

B = f(x; 0) 2 X �Rjhy�; x� yi > 0g:

With the help of the Conditions (21) and (22) it is easy to see that A and B are
convex and nonempty and besides

intA , f(x; �)jx 2 intdomf; f(x) < f(z) + �g 6= ;: (25)

Let us show that B \ intA = ;. Actually, if there exists (w; 0) 2 B\ intA, then

hy�; w � yi > 0 > f(w)� f(z):

However, due to (24) the latter is impossible becausew 2 S and hy�; wi > hy�; yi.
4) Hence, the sets A and B are separable (see [1–5]), i.e., 9(z�; �) 6= 0 2

X� �R, 9
 2 R, such that,

i) hz�; xi+ �� 6 
 8(x; �) 2 A;

ii) hz�; xi+ �� < 
 8(x; �) 2 intA;
iii) hz�; xi > 
 8x : hy�; x� yi > 0:

9=
; (26)

If � > 0 we derive from (26, i) with x = y, that

hz; yi+ �� 6 
;8� : � > f(y)� f(z) = 0;

which is impossible.
If � = 0 it results from (26, ii and iii) that

hz�; xi < 
 8x 2 intdom f;

hz�; xi > 
 8x : hy�; x� yi > 0:

Since fxjf(x) 6 f(z)g � intdom f; then 9� > 0 : v , y+�(u�z) 2 intdom f

and therefore,

hy�; v � yi = �hy�; u� vi > 0:
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Hence, hz�; vi > 
. On the other hand, hz�; vi < 
, since v 2 intdom f . Thus, the
case when � = 0 is also impossible and therefore, � < 0.

5) By dividing (26) by j�j and setting x� = j�j�1z�; � = 
j�j�1, we have

i) hx�; xi � � 6 � 8(x; �) 2 A;

ii) hx�; xi � � < � 8(x; �) 2 intA;
iii) hx�; xi > � 8x : hy�; x� yi > 0:

9=
; (27)

If x� = 0 it follows from (27, ii and iii) that

�� < � 6 0 8� : 9x 2 intdomf; f(x)� f(z) < �:

Due to (21) there exists x1 2 D : f(x1) < f(z). Therefore, 9� : 0 > � >

f(x1)� f(z) and then 0 < �� < � 6 0 which is impossible. Hence, x� 6= 0.
6) By setting x = y, � = f(y) � f(z) = 0 in (27, i and ii) we obtain

� 6 hx�; yi 6 �, that is, � = hx�; yi. Furthermore, since x� 6= 0 6= y� and by
virtue of (27, iii) one has

hx�; xi > hx�; yi 8x : hy�; xi > hy�; yi:

Hence, there exists � > 0 : y� = �x�. On the other hand, it follows from (27, i)
that

hx�; x� yi 6 � 8(x; �) : f(x)� f(z) 6 �:

By setting � = f(x)� f(z) = f(x)� f(y) we have

hx�; x� yi 6 f(x)� f(y) 8x 2 intdom f:

Hence, x� 2 @f(y) and the proof is completed. E

Now we are in the position to obtain the basic result for the sequel of the paper.
Let ExtC be the set of extreme points of C .

PROPOSITION 2. Let f : X ! R [ f+1g be a proper convex function whose
Lebesque set S(f; z) = fx 2 Xjf(x) 6 f(z)g is compact.

If a nonempty set A � X belongs to S(f; z) i.e.,

A � fx 2 Xjf(x) 6 f(z)g; (28)

then

@f(y) � N(yjA) 8y 2 Ext S(f; z): (29)

If, in addition, Assumption (21) holds, then Condition (29) implies Inclusion (28).
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Proof. 1) Since 8y 2 Ext S(f; z), equality f(y) = f(z) holds and from (28)
we derive

8y : f(y) = f(z); 8x� 2 @f(y); 8x 2 A;

0 > f(x)� f(z) = f(x)� f(y) > hx�; x� yi:

This means that x� 2 N(yjA).
2) If (21) holds then according to Lemma 2 Inclusion (28) is equivalent to

(20) where C = S(f; z) , S. Besides, in virtue of the known (see [3]) equal-
ity N(zjS) = cone @f(z) which holds due to (21), from (20, i) we derive
@f(z) � N(zjA). Now consider the second Inclusion (20, ii),M(zjS) � (A�z)�.
According to Proposition 1 the latter inclusion can be expressed as follows. For all
y 2 Ext S and for all x� 2 @f(y) and some � > 0, such that,

h�x�; y � ai = 1; (30)

the inequality

h�x�; x� zi 6 1 8x 2 A (31)

takes place.
Subtracting (30) from (31) and dividing by � > 0 we have hx�; x� yi 6 0 8x 2
A, i.e. x� 2 N(yjA). The proof is completed. E

3. Convex maximization over a feasible set

This section is devoted to the investigation of the convex maximization problem

f(x)! max; x 2 D; (P)

where f : X ! R [ f+1g is a convex closed function and D is a set from X ,
coD 6= X . Let us denote Do = fx 2 Xjf(z) < f(x)g and assume that

C , XnDo = fx 2 Xjf(x) 6 f(z)g � intdom f; (32)

C is compact: (33)

THEOREM 1. If z 2 D is a global maximizer of Problem (P) (z 2 Argmax(f;D) =
Argmax(P )) then

8y : f(y) = f(z); y 2 ExtC; 8y� 2 @f(y);

hy�; x� yi 6 0 8x 2 D:

)
(34)

If in addition,

9v 2 X : f(v) < f(z) < +1; (35)

the Condition (34) becomes sufficient for z to be a global solution to (P).
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Proof. It is easy to see that the inclusion z 2 Argmax(P ) is equivalent to
Do \ D = ;, or D � C . By using the convexity and the compactness of C and
with the help of Proposition 2 we obtain the assertion of the theorem. E

Remarks. 1) One can see that Assumption (35) is pertinent for the sufficiency.
Actually, for example, ifX = Rn and f is differentiable then all global minimizers
of f over the whole space Rn satisfy the condition

f 0(z) = 0;

and, as a consequence, Condition (34) trivially holds.
2) Obviously, Assumption (35) is equivalent to

@f(y) \ f0g = ; 8y : f(y) = f(z) (36)

which in the differentiable case gives

f 0(y) = 0 8y : f(y) = f(z): (360)

3) From (34) with y = x and for differentiable f we obtain the well-known
local OC

hf 0(z); x� zi 6 0 8x 2 D; (37)

usually proved for convex D. Here we do not need the convexity of D. Hence,
GOC (34) is connected with the Classical Extremum Theory.

4) In the non-smooth case it follows from (34) with y = z that

@f(z) � N(zjD): (38)

This necessary local OC was proved in [2] for a convex D. The convexity of D is
not obligatory here. In addition, it is clear that (38) is a particular case of the more
general and more informative Optimality Condition (34) in which the inclusion
@f(y) � N(yjD) holds 8y 2 Ext S(f; z) (consequently, f(y) = f(z) ).

EXAMPLE 1. Let, in (P );X = R; f(x) = (x2 � 2) and D = [�2;�1]. It is easy
to see that the ‘classical’ OC (36) holds at two points z1 = 1; z2 = �2.

a) Obviously, there only exists one pointy1 = �1; y1 6= z1 and y1 2 Ext S(f; z1).
But for u = �1 1

2 Condition (34) is violated:

hf 0(y1); u1 � y1i = �2:(�1
2) > 0:

Consequently, z1 is not a global solution.
b) z2 = �2. As above, there exists the unique point y2 = 2 6= z2 : y2 2

Ext S(f; z2). However, the OC holds.

hf 0(y2); x� y2i 6 0 8x 2 coD:
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It means that z2 is the global solution.
Note, that the verification of Optimality Condition (34) is rather difficult. In

order to make (34) more manageable it is possible to transform it into another
form.

THEOREM 2. Let the assumptions of Theorem 1 hold. In order for a point z to
be a global solution to Problem (P), it is necessary, and with the Assumption (35)
sufficient, that

8y 2 Ext S(f; z);8y� 2 @f(y);

and for every maximizing sequence fxkg of the linearized problem

hy�; xi ! max; x 2 D; (39)

the following condition holds:

lim
k!1

hy�; xk � yi 6 0: (40)
E

It can be readily seen that Problem (39) is simpler than the original problem (P),
since the objective function of (39) is linear. For instance, in the case of convexD,
Problem (39) turns out to be convex. Hence, in this case, Problem (39) turns out to
be solvable with the aid of standard optimization methods [5]. On the other hand,
the investigation of Problem (39)

8y 2 Ext S(f; z); 8y� 2 @f(y);

is a hard task. However, in order to convince ourselves that z is not a global
maximizer to (P ), it suffices to find a single triplet (y; y�; u)

y 2 Ext S(f; z); y� 2 @f(y); u 2 D;

such that,

hy�; u� yi > 0:

This enables us, as the examples below show, to simplify the investigation of a
local solution considerably.

EXAMPLE 2. Consider the problem (P), where x 2 R2,

f(x) = maxfjx1j; jx2jg � 1; D =
4\
i=1

Di;

D1 = fx = (x1; x2)j0 6 xi 6 1; i = 1; 2g;

D2 = fx = (x1; x2)j �
1
2 6 x1 6 0; 0 6 x2 6

1
2g;

D3 = fx = (x1; x2)j � 1 6 xi 6 0; i = 1; 2g;

D4 = fx = (x1; x2)j0 6 x1 6 1 1
2 ; �1 1

2 6 x2 6 0g:
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It is not difficult to see that the Lebesque set

S(f; z) = fx 2 R2jf(x) 6 f(z)g

contains the simple set of extreme points

Ext S(f; z) = fy = (y1; y2) : jy1j = jy2jg;

that consists of four points, the vertices of the rectangle. Further, numbering these
vertices correspondingly to the orthant numbers, we obtain the equalities

@f(y1) = cof(1; 0); (0; 1)g;

@f(y2) = cof(�1; 0); (0; 1)g;

@f(y3) = cof(�1; 0); (0;�1)g;

@f(y4) = cof(1; 0); (0;�1)g:

At all other points of the level surface

U(z) = fy 2 R2jf(y) = f(z)g; z 6= 0;

the function f(�) is differentiable, and its gradient is equal to one of the four vectors:
(1,0), (0.1), (-1,0), (0,-1). Let us show, how, with the help of Theorem 3, it is possible
to reach the global maximum f overD beginning at and of arbitrary feasible point.
Let z0 be (�1

2 ;
1
2). It follows from the above that y�0 = (�1; 0) 2 @f(z0). Then, it

can be readily seen that the point z1 = (�1; 0) 2 D3 is the solution of the problem

hy�0 ; xi ! max; x 2 D:

Besides, the point z1 turns out to be stationary, since f 0(z1) = (1; 0) and

hf 0(z1); x� z1i 6 0 8x 2 D:

Nevertheless, if we consider only one y 2 S(f; z1), namely y = (�1;�1) with
y�1 = (0;�1) 2 @f(y), one obtains z2 = (0; 1� 1

2) as the solution of the linearized
problem

hy�1 ; xi ! max; x 2 D:

Now let us prove that z2 2 Argmax(f;D). Actually,

Ext S(f; z2) =
n�

1 1
2 ; 1

1
2

�
;
�
�1 1

2 ; 1
1
2

�
;
�
�1 1

2 ;�1 1
2

�
;
�

1 1
2 ;�1 1

2

�o
:

In addition, it can be readily seen that 8y 2 Ext S(f; z2), 8y� 2 @f(y) the solution
u(y; y�) of the problem

hy�; xi ! max; x 2 D;

exists and verifies the condition

hy�; u(y; y�)� yi 6 0:
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Hence, z2 is the global solution.

4. Minimization over the supplement of a convex set

Consider the problem

f(x)! min; x 2 D; (PR)

where D has the non-empty compact convex supplement C , such that,

C , XnD; z 2 (D \ clC) � bdD;

clA, and bdA being the closure and the boundary of a set A from a Banach space,
respectively. In addition, assume that

�1 < f(z) = f��(z) < +1;

Do = fx 2 Xjf(x) < f(z)g � intdomf��;

)
(41)

where

f��(x) = sup
x�2X�

f< x�; x > �f�(x�)g; f�(x�) = sup
x2X

f< x�; x > �f(x)g

are the bipolar and the polar functions of f(�) (see [2–5]). In particular, f may
be convex and finite. Note, that Problem (PR) differs from Problem (P) because
the feasible set of (PR) is the supplement of a convex set, and therefore, it might
happen that coD = X . In addition, the objective function is not convex or concave,
but has its proper bipolar f��. Recall the following fact, mentioned in Introduction.

PROPOSITION 3 ([12],[14]). LetC be a closed convex set and letD be an arbitrary
set from X , s.t. C \D 6= ;. Then the inclusion D � C holds if and only if

N(yjC) � N(yjD) 8y 2 bdC: (42)

THEOREM 3. i) If z 2 bdD is a global minimizer in (PR) (z 2 Argmin(PR)),
then

8y 2 Ext C; 8y� 2 N(yjC);

hy�; x� yi 6 0 8x : f(x) 6 f(z):

)
(43)

ii) If, in addition,

9v 2 X : f(v) < f(z); (44)

then (43) becomes sufficient for z to be a global solution of (PR).
iii) In particular, from (43) with y = z it follows

N(zjC) � cone @f��(z): (45)
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Proof. i) If z 2 Argmin(PR), then D \Do 6= ;, which is equivalent to

Do � C: (46)

Since C is closed and convex one has

clcoDo � C; (47)

where clcoDo = fx 2 Xjf��(x) 6 f(z)g. Then due to Proposition 3 we obtain

N(yjC) � N(yjclcoDo) 8y 2 bdC: (48)

Condition (48) can obviously be expressed as

8y 2 bdC 8y� 2 N(yjC);

hy�; x� yi 6 0 8x : f��(x) 6 f(z);

)
(49)

which is equivalent to (43) in virtue of (41).
ii) Now let (43) and (44) hold. As above, (43) implies Condition (49) which is

equivalent to (48) and (47). Let us prove that (47) implies (46). Actually, due to
(44) the set

int(clcoDo) = fx 2 Xjf��(x) < f(z)g

is nonempty and open. Furthermore, since Inclusion (47) holds we have

int(clcoDo) � intC � C:

Besides, Assumption (41) allows us to conclude that Do � int(clcoDo) and con-
sequently (46) also takes place. The latter means that z 2 Argmin(PR).

iii) Since (see [2–5]) N(zj clcoDo) = cone@f��(z) Inclusion (48) with y = z

implies (45). E

Let us make several remarks concerning the obtained condition.
1) It is well-known (see [2–5]) that from the classical OC for Problem (PR) it

follows that

@f(z) \N(zjK) 6= ;; (50)

where K is a local conical approximation of D. Condition (43) is completely
different because it works with the supplement C of the feasible set D. This can
easily be seen when one sets (43) as

N(yjC) � N(yjS(f; z)) 8y 2 bdC; (51)

where S(f; z) = fx 2 Xjf(x) 6 f(z)g. For example, for differentiable f , (45)
implies

hf 0(z); x� zi 6 0 8x 2 C: (52)
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It seems, that this condition is known and even classical. However, taking into
account that (52) does not hold for the elements of the feasible set D but only
for the points of its supplement C = XnD, it becomes clear that (43) is not
really ordinary because it works with unfeasible elements. In addition, Condition
(45) (hence (52)) is the particular case (y = z) of the more general and the more
informative (8y 2 bdC) OC (43).

2) On the other hand, (43) conserves the Algorithmic Property of the classical
conditions in the following sense. In order to verify (52) we have to solve the
linearized problem

hf 0(z); xi ! max; x 2 C:

If now, 8y 2 bdC and 8y� 2 N(yjC), we consider the problem

hy�; xi ! max; f(x) 6 f(z); (53)

then it follows from (43) that whenever fxkg is a maximizing sequence of Problem
(53) we have

lim
k!+1

hy�; xk � yi 6 0:

3) Besides if there exists a single triplet (y; y�; u)

y 2 bdC; y� 2 N(yjC); f(u) 6 f(z);

for which we have hy�; u� yi > 0 then in virtue of (43) z is not a global solution
of Problem (PR).
EXAMPLE 3. Define f(�) and D in (PR) as follows

f(x) = maxfex; 1 � x;�2xg; D , Rn]� 1; 1[:

Obviously, C =] � 1; 1[ and bdC = Ext C = f�1; 1g. Denote z1 = �1; z2 = 1.
Then

@f(z1) = [�2;�1]; @f(z2) = ff 0(z2)g = e:

It can easily be seen that z1 and z2 verify the classical condition (50) so that they
are stationary in the classical sense (whereK(z1) =]�1;�1[;K(z2) =]1;+1[).
Let us apply Condition (43).

1) For z2 = 1 we have f(z2) = e and one can see that u = � e

2 is the solution
of the problem (y� = �1=2 2 N(yjC))

hy�; xi ! max; f(x) 6 f(z2);

In addition, we have

hy�; u� yi =
�
�1

2

� �
� e

2 + 1
�
> 0;
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and hence, z2 is not a global solution.
2) For z1 consider the two problems

hy�1 ; xi ! max; f(x) 6 f(z1) = 2; (54)

hy�2 ; xi ! max; f(x) 6 2: (55)

y�
i
2 N(yijC); i = 1; 2; y1 = �1; y2 = 1; fy1; y2g = bdC:

Since N(y1jC) =] � 1; 0]; N(y2jC) =]0;+1], it is possible to take y�
i

=
�1; y�2 = 1. Then we see that u1 = �1 and u2 = ln 2 are the solutions of
Problems (54) and (55), respectively. In addition,

hy�1 ; u1 � y1i = 0;

hy�2 ; u2 � y2i < 0:

Thus, Condition (43) holds 8y 2 bdC and therefore, z2 is the global solution. E

Now, consider the problem with reverse convex constraint

f(x)! min; g(x) > 0; (56)

where f satisfies (41) and g : X ! R [ f+1g is a convex closed function, such
that,

C , fx 2 Xjg(x) 6 0g � intdom g; (57)

�1 6 inf(g;X) < g(z) = 0: (58)

THEOREM 4. i) If z is a global solution of Problem (56), g(z) = 0, then

8y : g(y) = 0; 8y� 2 @f(y);

hy�; x� yi 6 0 8x : f(x) 6 f(z):

)
(59)

Under Assumption (41) Condition (59) becomes sufficient for z to be a global
minimizer to (56).

ii) If set C defined by (57) is compact then in (59) it is sufficient to use only the
points y 2 Ext C .

iii) In particular from (59) with y = z it follows that

@g(z) � cone @f��(z): (60)

Proof. The assertion i) follows from Theorem 3 and the equalities (see [3]):

N(yjC) = cone @g(y) 8y : g(y) = 0; (61)

that are true because of (58).
ii) It suffices to recall Proposition 2.
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iii) It results from (61) and (45) of Theorem 3. E

Remarks. 1) It can be readily seen when X = Rn and f and g are differentiable
that it follows from (60)

g0(z) = �f 0(z); � > 0: (62)

The latter is the well-known local optimality condition. Hence, there is a certain
relation between (59) and the classical OC for Problem (56).

2) On the other hand, it is not difficult to see that Condition (60) is not standard
because 8y� 2 @g(z) it states the existence of a representation y� = �x�; � >

0; x� 2 @f��(z), while the classical OC assert the existence of only one of such
representations.

3) Besides, (60) is only a particular case (y = z) of the more deep and more
informative OC (59) (8y 2 Ext C).

4) Clearly, for verifying Condition (59),

8y : g(y) = 0; 8y� 2 @g(y);

one has to solve the linearized problem

hy�; xi ! max; f(x) 6 f(x); (63)

(which is simpler than the original problem (56)) and after that one has to verify
the inequality

lim
k!1

hy�; xk � yi 6 0;

for a maximizing (for (63)) sequence fxkg.
5) Finally, in order to show that z is not a global solution it suffices to find a

single triplet (y; y�; u) : g(y) = 0; y� 2 @g(y); f(u) 6 f(z), s.t.

hy�; u� yi > 0:

EXAMPLE 4. Consider the problem

f(x) ,
�
x1 �

1
2

�2
+
�
x2 + 1

2

�2
! min; g(x) , jxj �

p
2 > 0:

Since g(�) is differentiable : g0(x) = x=jxj for x 6= 0, it results from (62) with
z = (�1; �2)

(�1; �2)

jzj
= 2�

�
�1 �

1
2 ; �2 +

1
2

�
: (64)

Taking into account, that jzj =
p

2, we have

��1 = �1 � 1; ��21 = �2 + 1; � > 0:
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Consequently, �1 = ��2 = (2 � �)�1. Further, since �2
1 + �2

2 = 2, we obtain a
quadratic equation for �. Solving this equation we have �1 = 3; �2 = 1. Hence,
there are two critical points

z1 = (1;�1); z2 = (1;�1):

Now, apply GOC (59). In order to do this consider the points y = (0;�
p

2),
g(y) = 0, u = (0; 5

2) and f(u) = 17
4 < 9

2 = f(z1). Then, we have�
g0(y)

jyj
; u� y

�
= 5

2 �
p

2 > 0:

The latter means that the point z1 is not a global solution. Hence, the point z2 is a
global minimizer because Equation (64) has only two solutions.

EXAMPLE 5. Let x 2 R2 and consider the problem

f(x) = (x1 � 1)2 + x2 ! min; g(x) = x2
2 � x1 � 2 > 0:

It can be readily seen that the point z = (�2; 0) verifies the classical condition
(62). However, for (y; u)

y = 1
2

�
1;
p

10
�
; g(y) = 0 = g(z); u = 1

2

�
1; 3

2

p
10
�
; f(u) 6 f(z);

we obtain

hg0(y); u� yi =
10
4
> 0:

Hence, according to Theorem 4, z cannot be a global solution.

5. Conclusion

In this paper, using the subdifferential @f(y), at an extreme point y of the compact

S = S(f; z) = fx 2 X=f(x) 6 f(z)g

of a convex function

f : X ! R [ f+1g

over a Banach space X , the following results have been obtained:
– the characterization of an element y� 2 X�, which belongs to the polar (S�z)o

but is not contained in the normal cone N(z; S);
– the characterization of the inclusion of a set A � X into S(f; z);
– global optimality conditions for convex maximization, which generalized the

classical optimality conditions for the problem of interest;
– global optimality conditions for reverse convex problems, that are connected

with Classical Extremum Theory;
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– all theoretical results were illustrated by numerical examples.
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